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Counterexample-An Inadmissible Estimator which is 

Generalized Bayes for a Prior with “Light” Tails 

LAWRENCE D. BROWN* 

Rutgers University and Cornell Univekty 

Communicated by A. Cohen 

Previous work on the problem of estimating a univariate normal mean under 
squared error loss suggests that an estimator should be admissible if and only 
if it is generalized Bayes for a prior measure, F, whose tail is “light” in the 
sense that IF f*-‘(x) dx = a~ = jIrm f*-‘(x) &, where f* denotes the convolu- 
tion of F with the normal density. (There is also a precise multivariate analog 
for this condition.) We provide a counterexample which shows that this sug- 
gestion is false unless some further regularity conditions are imposed on F. 

Consider the much discussed problem of estimating a p-variate normal mean 
having identity variance-covariance matrix when using squared-error loss. 
Let F denote a generalized prior (= non-negative measure) over the parameter 

space, 0 = R”, of unknown means. Let 6, denote the corresponding generalized 
Bayes procedure. Thus 

where y  denotes the standard normal density and 

f *tx) = 1 9)(x - e) qde). 

It is known (Brown [l, Theorem 3.1.11) that every admissible procedure is 
of this form with 

f  *w < 02 Vx E RP. (2) 

Received July 11, 1978; revised November 14, 1978. 

AMS 1970 subject classification: Primary 62E15. 
Key words and phrases: estimating a normal mean, generalized Bayes estimators. 

* Work supported in part by the National Science Foundation under Grant MPS 72- 
05075-A02. 

332 
0047-259X/79/020332-05$02.00/0 
Copyright 0 1979 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



AN INADMISSIBLE ESTIMATOR 333 

Not all procedures of the form 6, are admissible. When p = 1 we say that 
F has a heavy tail if 

I m (llf*(x))dx < cc or /-‘(lif*(x))dx < co. (3) 
1 --m 

If the tail of F is not heavy then it is light. More generally (p > l), the tail ofF 
is “heavy” if the differential equation V * (f*Vk) = 0 has a bounded non- 
constant, differentiable solution on {x: 11 x 11 > l> satisfying K(x) = 1, 11 x 11 = 1. 
In Brown [ 1, p. 8851 it is shown that 6, is inadmissible if the tails of F are heavy. 

Stein’s method. A more elementary proof of this fact proceeds, in outline, 
as follows: Let 6, be a generalized Bayes procedure with everywhere finite risk. 
Stein [5] has shown that if 6(x) = 6,(x) + Vk(x)/k(x) for some continuously 
differentiable function, k > 0, 

&(ll SF - 0 II”) - Wll~ - 6 II”) = ~%K---2v . (f*W,!f*k + II VW II21 (4) 

so long as E&l Vk/k 11”) < co, VB E Rp. The condition that the tail ofF be heavy 
is equivalent to the existence of a suitable function k which is subharmonic 
(relative to f *) in the sense that 

V*(f*Vk)<O Vx E RP. (5) 

Obviously, when such a function, k, exists the expression (4) shows that 8r is 
inadmissible. 

The major part of Brown [l] is devoted to establishing the converse result: 
S, is admissible if the tail of F is light. This result is established there only under 
certain mild additional regularity conditions. (These conditions are slightly 
weaker than the condition that 8, have uniformly bounded risk.) At the time 
these conditions appeared to us to be merely technical ones, required by certain 
inadequacies of our method of proof. Indeed, Srinivasan [4] has recently proved 
this admissibility result under notably milder conditions than ours. More 
compelling yet, mathematical aesthetics appeal for a reversal of the elegant 
argument involving Stein’s method. 

Unfortunately this appeal cannot be satisfied. The following counterexample 
shows that there do exist priors with light tails for which the generalized Bayes 
estimator is inadmissible. Naturally the prior, and corresponding procedure, 
are weird; for the results of Brown and Srinivasan show convincingly that any 
such counterexample must be peculiar. 

Contruction. Let p = 1. The prior, F, will put mass 7ri on the point a, , 
i = 0, &l, -&2 ,..., where ni = rei, and CQ = --ad. The values ui , 7ri, 
i = 0, l,... are constructed by induction along with values pi-i as follows: 

Let a,, = 0, r,, = 3, and let p-i > 0 satisfy V&P-~) = l/10. Note that 
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p-i > 2. Given a, , ri , and piwl inductively define pi = (1 - @(2.pi-r + 3))~1’s 
+2 where @ denotes the standard normal C.D.F., and 

ai+ = ai + Pi-1 + 1 + Pi , 

CT& = lOqJ(&). 

and 

For convenience let bi = ai + pi-r . Note that r&b, - ar) = l/IO and 

as+1 =bi+ 1 +pi. See Figure 1. 
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FIG. 1. Relative positions of ai , bj , pi . 

Verijicutim. It must be shown that f *(x) < co, Vx E R, that the tails of F 
are light, and that 6, is inadmissible. This verification will be carried out in 
several steps. 

Briefly, it will be shown that f*(x) is small for 6, < 1 x 1 < bi + 1 (i > 0) 
which implies that f *(x) < co and that the tails of F are light. Then it will be 
shown that 6,(x) is very near ai when b,-r + 2 < x < b, - 1. Thus if, for 
example, 0 = aa (i 3 1) then 6, is very near 8 with probability nearly one; but 
there is a very small probability that x < b,-r - 1 or x > bi + 2 and when 
this occurs I&(x) - ai 1 is approximately pi + pi-r + 1, and pi is so huge that 
overall R(B, S,) > 1. Similar reasoning extends to all values of 0 and will be 
made precise to show that R(B, 8,) > 1, VB E R, and hence 6, is inadmissible. 

I. 7r#(X - Ui) < (l/10) exp{- ] x - Qi I (I x - ai I - PM-d/2) < 

(l/10) exp{-(I X - Ui I - pjil-r)2/2} if 1 X - Ui I > pli[-1; i = 0, &I,... . 

Proof. Suppose x > 0, then r&x - ui) = (1/(27r)r/2) 7ri exp(-(x - c + 

C - u,)2/2} = ( 1/(21T)112)7Ti exp{-(c - Ui)2/2) exp{-(x - C)(C - Ui) - (X - C)2/2} 

< ( 1/(27r)1’2)7Ti exp{-(c - ai)2/2} exp{-(x - UJ(X - C)/2} if (x - C)(C - Ui) > 0. 
Choose c = ai + pIif- if x > a,, or c = ua - plilP1 if x < ai, and apply the 
above while noting that (1/(27r)9ra exp{-(c - c~~)~/2} = T&P& = l/10. 
The result for x < 0 follows by symmetry. 1 

II. If 6, < I X 1 < bi+l 3 i = 0, I,..., th f*(X) < 2/5. 

Proof. The following is for x > 0. The proof for x < 0 is symmetric. 

f*(X) = Cz-, r&X - uj) = CT=_, “i+@(X - ui+j) + CT=, Pi&X - u&f)* 
Note that ui - ad-r = pie2 + 1 + pa-r > 1 (actually, >l), for i > 1. Hence 

ci”1 ?+Ff@ - @i+j) B u/w c,“p, exp[-(j - 1)2/2] < l/5 by I. Similarly 

~jm_o T&&X - Ui-j) < l/5* 1 

We will later also need: 
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III. I f  b&l + 2 < x < bi - 1 then c3m_i+I 7rlcp(x - $) < l/IO and 
g:‘, 7&x - Uj) < l/10. 

Proof. Similar to II. i 

PROPOSITION 1. f*(x) < co Vx E R, and the tails of F are light. 

Proof. Note that {x: f  *(x) < co} 1 {x: bi < 1 x 1 < bi + l> by II and 
{x: f  *(x) < 001 is convex; see e.g. Lehmann [3, p. 311. Hencef *(x) < co Vx E R. 
By II s:i (l/f*(x)) dx = s: (l/f*(x)) dx > (5/2)(max i: 6, + 1 < B} + 00 as 
B + 03. Hence the tails of F are light by (3). 1 

IV. If x > c+_~ + 1 (i > 1) then &‘, (x - aj) T&X - aj) < 2/5. If  
x < b, (i > 0) then C,“_,+l (aj - x) 3y(x - ui) < 2/5. 

Proof. If x > &_I + 1 and j < i - 1 then (x - aj) r&x - aj) < 

(1/10)(x - 4 exp[-~ld~ - aj - Pljl-JP - (X - ~5 - ~131--1)~/21 by 1. But, 
x - ~5 - pljl-l> 1 andPl+l> 1 SO that (X - CQ) exp(--pljl-l(x - aj - pljl-1)/2) 
< max{t exp(-c(t - c)/2): c, t 3 1 < c < t - l} = 2e-1/2 < 2. Thus 
&t, (X - aj) r&X - Uj) < (l/10) Cii!m 2 exp(-(x - u5 - pljl-J2/2) < 2/5 
as in the proof of II. The second assertion of IV is proved similarly. g 

V. Ifbiel + 2 < x < bi - 1 (i > 1) then ~~cp(x - ai) > (l/10) e(pi-l-1/2) 
> 215. 

Proof. l&&x - ui) = r&x - aJ/~~&+,) = exp{(pi&i_l - 1 x - ai I) 

- (fwl - I x - ai l)“M> > exdfi-1 - l/2) since the condition on x is equiv- 
alent to (piW1 - ( x - ai I) > 1. The second inequality follows since piW1 > 2. 1 

VI. I f  6&, + 2 < x < bi - 1 (i > 1) then 1 6,(x) - ai 1 < 2. 

Proof. 6,(x) - ai = cTs--4) (a9 - Ui) rjy(x - ~5)/~j”E-, r5v(X - u5). Hence 

= jg+l (Uj - x + x - Ui) vAx - aj) 
w(x - 4 

since r&x - ai) > 2/5 > l/10 > CT=. 3 E+1 T&X - aj) by V and III along with 
x - ai < pie1 . Applying IV and V yields 

(SF(x) - a,)+ < (5/2)(2/5) + pi-leepi-1t1’2 < 2. 

A similar inequality applies to (S,(x) - a$. 1 
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PROPOSITION 2. R(B, 8,) = l&(&(X) - t3)2) > 1 V8 E R. Hence 6, is in- 
admissible. 

Proof. Let b,-, < 8 < bi (z’ > 1). Then Pre(X > 6, + 2) = 1 - 
@(b, + 2 - 6) > 1 - @(2pim1 + 3). Furthermore, when x > bi + 2 then 

VW) - f42 = (h+I - 4 + bW4 - ai+J)” b ((pi + 1) - 2)2 = (pi - 1)2 > 
(pi - 2)2 by VI and the monotonicity of 6,. Thus 

w, 6,) > (Pi - 2J2(1 - @(2&l + 3)) 2 1. 

The same basic argument applies when -b,, < 8 < bo . Finally, R(B, 6,) = 
R(--8, 6,) by symmetry. Hence R(O,6) > 1 VB E R. The minimax estimator, 
defined by 6(x) = x, has R(f?, 6) =_ 1. Hence R(8,6) < R(d, 6,) VB E R and 6, 
is inadmissible. 1 
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